
\

\

PROCESS MIGRATION IN UNIX ENVIRONMENTS

Chin Lu and J. W. S. Liu

1304 W. Springfield Avenue

Department of Computer Science

University of Illinois

Urbana, Illinois 61801

Contact Person: Chin Lu
Address: same as above
Phone: (217)-333-2518
Net Address: chin@cs.uiucdcs.edu

i

7._:,... _7_

;J ,_;_- l-u -+

I_ASA-CB-1_2951) £BOCISS _].C_.IOI_ IN UNIX N88-_.93 11

tii_clas

G3/61 01467::18

This work was partially supported by the NASA Contract No. NAG 1-613 and a grant from AT & T In-
formation Systems.

PROCESS MIGRATION IN UNIX ENVIRONMENTS

I. Introduction

A process is a program in execution. Process migration is the relocation of a process from

the host (the source host) on which it is executing to another host (the destination host) [1-7].

DEMOS/MP [1], V System [2], and ACCENT [3] are well-known systems that support process

migration.

We are concerned with how to migrate independent processes (or process groups) on a

network of identical UNIX hosts. By an independent process, we mean a background user

process that has no direct access to physical devices and interacts with its environment only

through system calls. Examples of independent processes

formating processes, and numerical computation processes.

are simulation processes, text

These processes often need long

execution time. By providing the capability to migrate them, load balancing can be carried out

dynamically. More importantly, this capability allows the processes to survive predictable host

failures and down times.

Typically, a set of system server processes resides on every host and provides basic services

to user processes on that host. We call these system processes local-server processes. Examples

of local-server processes include terminal handlers, file servers, daemon processes, etc.. These

local-server processes never migrate. When a host fails, local-server processes die. Hereafter, _he

term process refers to a user process unless stated otherwise. We refer to the local-server process

that handles the migration of processes on each host as the migration handler on that host.

* UNIX is a trade mark of AT & T.

Our attention is confinedto the casewhereall hostshaveidenticalhardware,run identical

software and provide identical services. Moreover, reliable file transfer betweenhosts is

supported. Hencea processcan run on any host and canbe migratedfreely from onehost to

anotherin principle. However,this doesnot meanthat a processcanbe migratedcorrectly in

the middleof its execution. In general,a migratedprocessmayexecuteincorrectlyor producean

unacceptable result on its destination host. For example, system clocks on different hosts are not

synchronized; process identifiers are not system-wide unique in most cases; a file descriptor

usually has some fields that have location dependent values. A process that accesses host

dependent variables may produce an incorrect result after it is migrated. For this reason, simple

migration packages such as the ones described in [8,9] do not handle the migration of host

variable dependent processes correctly.

This paper describes the structure of migration handlers that are capable of migrating

independent processes between UNIX hosts correctly. In particular, the migration handlers on

the source and destination hosts will migrate a process and will carry out the necessary actions to

ensure its correct execution on the destination host whenever it is possible to do so. By recording

relevant past behaviors of processes, the migration handlers maintain with enough information to

differentiate processes that can be migrated correctly from processes that cannot. By correct

migration of a process, we mean that the execution of the process on its destination host is

correct according to the criteria defined in Section II. The design of the migration handlers is

based on a formal model of interactions between processes and their environments. This model is

described in Section HI. The structure of the migration handlers and the supporting data

structures are described in Section IV. Section V is the conclusion.

II. Correctness Criteria

From the stand point of any process, a system consists of two entities: the process itself and

the environment of the process. The term environment loosely refers to the rest of the system

with respect to that process. There are at least two aspects of correct process migration. One

aspect is concerned with maintaining the state of the migrating process. Another aspect is

concerned with the interaction between the process and its environment. We assume here that

every process executes correctly on every host if it is not migrated.

It is obvious that in order for a migrated process to execute correctly, the state of the

process at resumption time must be the same as the state of the process at suspension time. The

state information includes the process's stack, text segment, data segment, register contents,

instruction pointer, etc.. We call this criterion of correctness the state consistency criterion[lO].

Typically, this criterion is satisfied by having the migration handler on the source host suspend

the process, save its state information, and transfer this information to the destination host. The

migration handler on the destination host restores the state of the process based on this

in for mation[1-3,8,9].

It is also obvious that the migration of any process should not leave its source host in an

inconsistent state. For instance, the files that are opened by the process must be closed; the

resources held by the process, including locks for exclusive access of shared resources and

temporary storage, etc., must be released. In addition, all consistency constraints of its

environment must be satisfied during the migration of the process. These constraints are both

application- and implementation-dependent. Typically, different constraints are enforced by

different components of the system regardless. We need not concern with this problem here.

A processrunningona UNIX host interacts with its environment through system calls. Let

X be a system call that returns a host-dependent result. Two invocations of E by a process, one

on its source host and one on its destination host, may return results that are inconsistent in

some sense. This inconsistency may cause the process to execute incorrectly after it is migrated.

For example, suppose that a process P on host A is suspended immediately after it invokes the

system clock, and the value returned by the system clock is t r Suppose that after it is resumed

I

on host B, it invokes the system clock again that returns the value t 2. When the clocks on

different hosts are not synchronized, t 2 is not necessarily larger than t t. In this case, P sees an

inconsistent view of its environment against monotonic constraint of time as a result of its

migration. This example illustrates the need for the second criterion of correct migration: A

migrating process sees a consistent view of its environment at all times. In other words, the

properties of its environment that are visible to a process must satisfy a given set of consistency

constraints. We call this property consistency criterion [10]. We say that a process is migrated

correctly if both the state consistency and property consistency criteria are satisfied.

Unlike the state consistency criterion, property consistency constraints are mainly semantic

constraints on certain system properties and hence are typically system dependent. The

monotonic property of system clock and the uniqueness of process identifiers are two simple

examples. In distributed systems where several versions of a file may exist on different hosts,

requiring a migrated process to use the same version (not necessarily the same copy) is another

example. In past studies on process migration, processes that access host dependent variables are

simply not migrated [1-3,8,9]. Methods to identify such processes are typically not given in these

studies. We note that this restriction on the types of processes is often unnecessary. For

example, the process P in the previous example cannot be migrated under this restriction.

However, P can be migrated correctly either after it no longer needs to access the system clock

4

,_ :, • : ,:.,_r,, :_

or before it makes any access to the system clock. Alternatively, if the migration handlers on its

source and destination hosts jointly maintain a consistent view of its environment for P by

compensating for the difference in system clocks on the two hosts, P can be migrated correctly at

any time. A function of the migration handlers is to detect any inconsistency between the results

returned by system calls made by a process before and after its migration. This inconsistency is

resolved by the migration handler on the destination host whenever it is possible to do so. In

other words, the migration handler maintains a host independent virtual environment on the

behalf of each migrated process.

HI. Formal Model of Interactions

The design of our migration handlers uses the formal model in [10] to describe the

interactions between_a process and its environment: The former is an object P. The latter

consists of a set of objects referred to as environment objects. An object consists of a name, a

representation of data structures stored in the object, and a set of operations on the data

structures in the object. The process interacts with its environment by invoking the operations of

the environment objects. This model is similar to the ones used in software specification and

verification [11], and in operating system design [12].

An object is modeled as a state machine M [13] represented by a 4-tuple:

M = _S, S0, O, T_,where S is the state space ofM. S o denotes the initial state; Oisaset

of transition operations; and T is the transition function. Each operation in O, when executed,

causes the object to change state. Its effect is expressed by the transition function

T: O × S --_ S. More specifically, there are two basic types of functions -- V-functions and

O-functions. Each primitive V-function returns the value of a state variable. The values of all

primitive V-functions at a particular moment specify the state of the object at that moment. A

5

V-function that returns a value computed from the values of primitive V-functions is called a

derived V-function. An O-function performs an operation that changes the state of the object.

The state transition called effects are described by assertions relating new values of primitive V-

functions to their prior values.

The interface between an object and its outside world is the set of external operations

consisting of all its derived V-functions and O-functions. A process interacts with its

environment by invoking the external operations of the environment objects. In particular, each

system call is either a derived V-function to examine the state of some environment object, or an

O-function to change the state of an environment object, or an O-function followed by a derived

V-function of an environment object. We refer to an O-function followed immediately by a

derived V-function as an OV-function.

Let Sp(t) be the state of the process P at time t. (For the sake of convenience, all time

references are in terms of a clock external to the system.)

suspension time s and resumption time r, respectively.

that

Sp(S) and Sp(r) are the states of P at

The state consistency criterion means

sp(,)= Sp(r) (1)

Let Ex(P) denotes the set of environment objects with which process P interacts on host

X. Suppose that there are n environment objects in Ex(P), each of them is denoted by Ei,

i = 1, 2, .., n. Then Ex(P) = { El, E2, .., E_ I. The state space of Ex(P), denoted by Sx(P), is

the product of the state spaces of all environment objects in Ex(P). Process P's view Vx(P, t)

of its environment Ex(P) on host X at time t is defined as the properties that P has observed

about Ex(P) in the time interval starting from the creation time t o of P to the time t. In other

words, Vx(P ,t)is the knowledge that P has about its environment Ex(P) up to time t [14].

6

Sincethesetof derivedV-functions of all environment objects defines exactly what a process can

observe about its environment, Vx(P, t) is the set of values returned by all the derived V-

functions of Ex(P) invoked by P in the time interval (to, t).

We express property consistency constraints in terms of assertions relating the values of

derived V-functions before and after the migration. Let t 1 and t 2 be two time instances with

t 2 _ t 1. When a process migrates from host X to host Y at a time between t 1 and t2, its view

Vr(P , t2) of its environment Ey(P) on host Y at t 2 is said to be consistent with its view

Vx(P , tl) of Ex(P) on host X at t 1 if all the property consistency constraints specified for the

system are satisfied. We say that P has seen a consistent view of its environment at t 2 with

respect to Vx(P, tl), or simply the two views are consistent; we use Vx(P, tl) => Vy(P, t2) to

denote this fact. In other words, the property consistency constraints serve as invariant

conditions that are true for both Vx(P , tl) and Vy(P, t2). Since a process runs correctly on a

single host, Vx(P , tl) =:> V)c(P, t2) is always true. The consistency of different views has the

transitive property. That is, for different time instances t 1 < t 2 _ t 3 , if Vx(P, tl) =) Vy(P, t2)

and Vy(P, t2) => Vz(P , t3), then Vx(P, tl) =:> Vz(P, ta) also holds.

The property consistency criterion is

vx(P, 8) => vy(P, ,) (2)

where s and r denote suspension time and resumption time, respectively. Any process may

migrate between two hosts, so long as the two views are consistent. This criterion simplifies the

implementation of migration handlers and allows more processes to migrate.

The importance of migration transparency has been discusses at length in the literature [1-

3,6,7]. Migration tranparency requires that any names related to process identifiers that are

passedto userprocessesin thesystemincludingthe migratedprocessitself not bechangedwhen

a processis migrated. We note that migration transparencycan be specifiedas one of the

propertyconsistencyconstraints.

IV. Design of Migration Handlers

This sectiondescribesthe structureof migrationhandlers that enforcesthe criteria(1)and

(2)on the behalfof allmigrating processeson UNIX hosts.More specifically,when a processP is

to be migrated from host X to host Y, the migrationhandler on the sourcehost (i)suspends the

processwhen allpending system callsare completed; (2)identifiesifthe processcan be migrated

(correctly);(3) transfersthe state of the process and the view of the environment to the

destinationhost,and (4)closesfilesopened by the process,releasesalllocks,memory space and

so on to leavethe source host in a consistentstate.Upon receivingthe informationsent by the

migration handler on the sourcehost,the migrationhandler on the destinationhost (5)resumes

the processand (6)maintains a consistentview on the behalfof the migrated process.

IV.1. ModellngObjects in G++

We considerhere a network of UNIX hostson which alluser programs and system kernels

are writtenin the C++ programming language. The C++ programming language supports data

encapsulation[15].A classinC++ isa userdefinedtype. An instantiationof a classisan object

of thatclass.Hence, forevery processin the system, thereisan instantiationof the userprocess

class.Similarly,each environment objectE i isan instantiationof the correspondingclasstype

ei. For example, Figure I shows the declarationof classesFile and clock.The variablesu_ofile,

u__pofileand u_cmask are calledclassmembers. Class members are variablesdeclaredinsidean

object;only member functionscan operate on them. The classmembers *ktimeand _'kztimeof

clock are kernelvariablesto indicatetime and time zone, respectively.(A kernel variablein

class

public:

File (
struct file*u_ofile;

char u_pofile;
short u_cmask;

/* file structures for open files */
/* per-process flags of open files */
/*mask for file creation */

open(char*,int,int); /* a listof system callsfor */

close(); /* fileoperations */

read(char*,int);
flock(int);

....

}; /* File */

class clock {
#ifdef KERNEL

static struct timeval *ktime;
static struct timezone *kztime;

#endlf
public:

};

/* Implementation of public functions
/* similar to old code

gettimeofday(struct timeval*, structtimezone*);

settimeofday(struct timeval*, struct timezone*);
/* clock */

,/
*/

Figure 1 Examples: Classes File and Clock

UNIX is declared between the keyword pair ¢f-ifdef KERNEL and _#endif.) If a kernel variable is

shared among processes on a single host, all objects of the same class refer to a single copy of it.

Such a kernel variable is declared static as is done for *ktime and *kztime in the clock object.

Each system call is declared as a member function in the interface of some environment object E i

[15], i.e., in the public part of the declaration of e i. For example, Figure 1 shows the declaration

of classes File and clock. The system calls open(), close(), read(), flock() etc. in Figure 1 are

declared as member functions of the class File. According to the model in Section III, these

system calls are external operations of any environment object of class File, and can be invoked

by other objects. Similarly, the system calls gettimeofday 0 and settimeofday 0 are specified as

external operations of an object of class clock.

C++ is an implementation language and it does not have the V-function and O-function

specification facilities required in our model. However, we can easily model operations defined in

C++ as V-functions, O-functions or OV-functions. In particular, we model class members as

primitive V-functions. Thus each class member corresponds to a state variable. A system call

in UNIX usually changes the state of the environment object as well as returning a value that

reflexes such a change. For this reason, we model a system call as an OV-function call, i.e., an

O-function call followed immediately by a derived V-function call. Since a data structure in

C++ may be declared in the argument list of an external operation, a derived V-function may

not return a single value. In particular, values returned by an invocation of a member function

are values returned by the invocation of the corresponding derived V-function.

IV.2. View Maintenance for Each Process

It is relatively easy to implement the functionality required to satisfy the state consistency

criterion. Simple packages described in [8,9] carry out process suspension and resumption in such

a way that (1) is satisfied. The suspension module restores the source host to a consistent state

by executing a procedure call similar to the standard killC1} function provided by UNIX system

[16] after the process's image containing its state information is transmitted to the destination

host. We will not be concerned hereafter with the suspension and resumption modules, but

confine our attention to the part of migration handlers that maintain consistent views on the

behalf of migrating processes. We call this function of migration handlers as view maintenance.

In UNIX environments, the values generated for a kernel variable is often location

dependent; that is, the values are unique on a single host. Inconsistency in the view of a process

can arise only when the process access location dependent kernel variables. [f no derived V-

function value is computed from the value of a kernel variable, that variable cannot be observed

10

by any user process. It cannot cause inconsistency in the views of processes during migration.

Hence, in the implementation of migration handlers, we are concerned only with those kernel

variables whose values or computed values are returned to user processes through system calls

and hence are visible to user processes.

According to the definition given in Section III, a process's view of its environment is the set

of values returned by all system calls invoked by the process since its creation time. To facilitate

view maintenance, however, it is only necessary to save the values returned by the most recent

call of every invoked V-function. A simple explanation is given as the following: Suppose that

at time t_+l, the process P makes a system call that includes an invocation of a V-function V|.

Hence Vx(P,t_) and Vx(P,t_+I) differ only by the value of the V-function call Vi; that is,

vx(P, = vx(P, u {

Let V/(tra) be the values returned by the last invocation ofV i before tn+l, and IVi(tk) lO<k<m]

be the set of all values returned by the invocations of V i. According to the transitive property, if

V,(t +1) is consistent with V_(t,) and V_(t,) is consistent with V,.(tk) for 0 <_ k < m, then

Vi(t_+l) is consistent with all Vi(tk) for 0 _ k < m. Therefore, to check consistency of

Vx(P,t_+I) with Vx(P,t_), it is only necessary to have the value of V.(t,_). That is, the values

returned by the most recent call of V v

To obtain information required for view maintenance on the behalf of P at any moment, we

associate every member function that corresponds to a derived V-function with a boolean

marker and a duplicate of the returned parameter. The markers of all V-functions are initially

set to false (unmarked). When a V-function is called by P, its associated marker variable is set

to true (marked) and the value returned by the V-function is saved in its duplicate (called a

marked duplicate). If a V-function is called several times, only the most recent value is saved. At

11

/* U-block: Per process structure */

a list of include files containing interface declaration of environment objects

struct user {
class
class
int
char

pcb u_pcb; /* process control block as class */
proc *u_procp; /* pointer to proc structure */
u_ar0; / address of users saved R0 */
u_comm[MAXNAMLEN + 1];

/* syscall parameters, results and catches (override entry block)

int u_arg[8];
int *u_ap;
char u_error;
union {

struct

*/

/* arguments tocurrentsystem call*/

/* pointerto arglist */

/* return errorcode */
/* syscallreturnvalues */

{
int R_vall;
int R_val2;

} u_rv;
off_t r_off;
time_t r_time;

} u_r;

/* data structures to maintain consistent view for system calls
/* that will pass host-dependent properties to user processes

/* file structures for open files

/* for opera() file or socket

class File *u_ofile[NOFILE];
struct fview {

int fmarker;

*/
*/

*/

*/

a list of marks and duplicates for all derived V-functions
of file operations in standard UNIX system calls

} flview[NOFILE]; /* array of duplicates for file operations*/

class clock *cptr;
struct cview {

int mark;
int larger;
struct timeval *tp;
struct timezone *tzp;

} *clckview;

/* clock object pointer*/

/* gettimeofday 0 marker*/
/* will be explained later*/
/* duplicate of time value*/
/* duplicate of time zone*/

Figure 2 Sample Pseudo code of U-block Declaration

12

any time, the information needed by a migration handler to carry out view maintenance on the

behalf of P can he obtained by scanning the marker of every derived V-function to determine

whether the function has been called and by checking the value saved in every marked duplicate

to determine whether property consistency constraints are satisfied. In other words, the values in

Vx(P,s) needed for view maintenance are obtained from all the marked duplicates of derived

V-functions of Ex(P).

The data structure used to support the interaction of a process with its environment is

called a U-block in our implementation. A U-block is similar to the user structure defined in

the header file user.h in the Bsd 4.2 version of UNIX [17] except that each U_block includes

additional data structures to keep the markers and duplicates of V-functions for every

instantiated environment object. Figure 2 shows a sample pseudo code of the U-block

declaration. The data structures, flview[NOFILE] and *clckview, are declared as fview and

cview for file objects and clock objects to support view maintenance. (The operations on

flview[NOFILE] and "clckview to support view maintenance will be discussed later) When a

process invokes a system call, the name of the system call is placed in the U-block along with the

list of actual arguments of that call. The execution control is then switched from the user mode

into system mode and the system call is executed. Before the control is switched back to user

mode, the returned value(s) and error code if there is any are placed in the U-block. In addition,

the marker associated with the corresponding V-function is marked and the duplicate is

updated. Figure 3 shows how the execution control is switched back and forth between a user

process and a system process. Figure 4 shows the relationship between the content of a U-block

and the environment objects at run time.

13

UserProcess U-block

• • O

• • Q

call name

parameter list

error code

return values

markers

duplicate values

• • •

Oil O

System Process

/

Figure 3 Execution Control Between a Process and its Environment

U-block

ooo

oQo

ool

oQI

Qil

E 1

state

variables

V-functions
O-functions

//_ E2

I state

:. variables

V-functions
O-functions

state

variables

V-functions

O-functions

Figure 4 User Process Object and its Environment Objects

14

IV.3 The Functionality of Migration Handlers

In general, property consistency constraints are part of the specification of an operating

system. Sometimes these Constraints are not explicitly specified even when the implementation

fulfills the requirement imposed by these constraints. However, in order to support correct

migration of processes, property consistency constraints must be specified explicitly.

To identify whether a suspended process can be migrated, the migration handler on the

source host determines what the process has observed about its environment objects by Scanning

the U_block of the process for markers that are set and for marked duplicates. The process can

be migrated if for every environment object instantiated, (1) no property consistency constraint

is specified for the object, or (2) the duplicates associated with all derived V-functions that have

constraints are still unmarked, or (3) the property consistency constraints of invoked V-

functions can be maintained on the destination host. Otherwise, the process is not migrated.

After the state information and the view of the process (i.e., the stack, text, register

content, etc. and its U-block) are transferred from the source host to the destination host, the

migration handler on the destination host restores the environment state for the process by doing

the following steps.

Step One: Bind all kernel variables that are accessed by P through external operations of

environment objects on the source host to their corresponding local kernel variables on the

destination host.

Step Two: For every V-function or OV-function that has its marker set in the U-block,

instantiate its environment object by invoking the same V-function (or OV-function) on the

destination host. Then check if property consistency constraints are satisfied by comparing the

/* Declaration from Figure 1 */

classclock {
#ifdef KERNEL

static struct

static struct

#endif
public:

};

timeval *ktime;

timezone *kztime;

gettimeofday(struct timeval*, struct
settimeofday(struct timeval*, struct
/* clock */

timezone*);
timezone*);

* Declaration from Figure 2

struct cview {
int mark

int larger;
struct timeval *tp;
struct timezone *tzp;

} *clckview;

*/

/* marker */
/* view maintenance indicator */
/* duplicate of time value */
/* duplicate of time zone */

*

/,
/,

initially CVIEW-_>mark_0; CVIEW->larger_---1; for migration handler */

Normal code used each time the system call of

gettimeofday(timeval *tval, timezone *zval) is requested
{

C.gettimeofday(tval,zval);
if (CVIEW-:>larger) { /* consistent

copy(tval,CVIEW->tp); /* update duplicate
copy(zval,CVIEW-> ztp);

return tval and tzval;

} else

else

};

*/
*/

*/
*/

if (bigger(tval,CVIEW-tp)&&blgger(zval,CVIEW-t zp)) {
copy (tv al,CVIEW- > tp);
copy(zval,CVIEW- > tzp);
CVIEW- > larger -_1;
return tval and zval;

/* return duplicates */
return CVIEW-> tp and CVIEW-> ztp instead of tval and zval

/* code used by the migration handler on the destination host to */
/* instantiate the clock object and check for consistency at resumption time */

bind *ktime and *kztime to corresponding kernel variables

C.gettimeofday(timeval *tval,timezone *zval);
if (bigger{tval, CVIEW->tp)) /* consistent */

CVIEW- :> larger = 1;
else CVIEW->larger : 0; /* indication of possible inconsistency*/

/* view of P's is not updated then*/

Figure 5 Implementation of View Maintenance for Clock Object

16

returned values of the V-function call (or O V-function call) with the corresponding duplicate

values in the U_block transferred from the source host. If an inconsistency should occur, the

migration handler must resolve the inconsistency accordingly.

In an actual implementation, the re-instantiation of environment objects and the view

maintenance can be done dynamically rather than statically as described above. An environment

object does not need to be instantiated until the resumed process invokes some of its external

operations. The migration handler on the destination host can save some unnecessary overhead

if the environment object is not referenced again by the migrated process. However, the

migration handler on the destination host must check for view consistency every time a V-

function or O V-function is called unless the handler can distinguish the first invocation of each

V-function from subsequent invocations. The solution to resolve any inconsistency depends on

what the invariant conditions are. Following are two examples showing how static instantiation

and dynamic instantiation are done.

In the example shown in Figure 5, the process P is migrated and the view maintenance for

the monotonic property of time is done statically at resumption time. Suppose that C is a clock

object in Ex(P,s }. The variable CVIEW is a pointer to *clckview list of type cview and it is used

to do view maintenance for C. C.settimeofday() and C.gettimeofdav 0 are external operations of

clock object C. The procedure call copy(argl,argP) is used to copy the content from the first

argument to the second argument of the same type. The function bigger(argl,arg2) tests if the

first argument is bigger than the second argument. The two variables CV[EW-)tp and

CV[EW-:>ztp are used as pointers to the duplicates for the V-function call C.gettimeofday O.

Marker is the marker of C.gettimeofday(). The variable larger is used for the migration handler

to maintain view consistency. Initially, larger is set to true. Larger is set to false only if

C.gettimeofday 0 returns a smaller value than the values returned by the last call. When the

17

/* Declaration from Figure 1 */

class

public:

File {
struct file *u_ofile; /* file structures for open files */
char u_pofile; /* per-process flags of open files */
short u_cmask; /* mask for file creation */

open(char*, int, int); /* a list of system calls for */
close(); /* file operations */
read(char*,int);
flock(int);
°.°H°..°°

}; /* File */

/* Declaration from Figure 2 */

class File *u_ofih[NOFILE]; /* file structures for open files */
struct fview (

int fmarker; /* for open() file or socket */
a list of duplicates for each V-function derived

from file operations of standard UNIX system calls
} flview[NOFILE]; /* array of duplicates for file operations */

/* code of migration handler to maintain consistency and view update */
/* For a system call request read(d, buf, nbytes); */
/* FVIEW=flview[d]; FVIEW.offset,FVIEW.flags,FIEW.mode,FVIEW.whence */
/* are duplicates; but are not shown in the declaration of fview */

if (fiview[dl.fmarker=-----:_O)
report error message;

else if (first call after migration)

}
else

/* not opened yet */
{ /* get to last read position */

u_ofile[d]- > open (FVIEW.pat h,FVIEW.flags,FVIEW.mode);
u_ofile[d]->lseek(FWEW.o set,FV W.whence);
u_ofile[d]- > read(buf,nbytes);
update content of FVIEW; /* the same as flview[d]*/

{
u_ofile[d]-> read(buf,nbytes);
update content of FVIEW;

/* normal read operation */

/* normal view update*/

/* code for other system call request are not shown here */
°°,°°.°°°**

Figure 6 Sample Pseudo Code of Migration Handler for File Object

18

migration handler on the destination host resumes the process, it first binds _ktime and _kztime

to their corresponding kernel variables on the destination host. Then the migration handler

invokes C.gettimeofday 0 and checks the returned values against the duplicate values transferred

from the source host using the function bigger(). If the returned values are smaller than the two

duplicates, the handler sets larger to false before P is resumed. Thereafter, the values returned

to P each time gettimeofday 0 is called are the values from the duplicates instead of the kernel

variable values and the two duplicates are not updated until the kernel variable values are

bigger. Alternatively, the process can be blocked until the kernel variables are bigger than the

duplicates. This alternative is not shown in Figure 5.

As an example of migration handlers that handle the re-instantiation of environment

objects dynamically, suppose that a file object u_ofile[d] in Ex(P,s) has opened on the source

host by the open() system call where d is the index of the file descriptor returned to P. The

variable FVIEW has the type fview and FVIEW is assigned to flview[d]. Figure 6 shows the

sample code of the migration handler to do view maintenance for read() operation on the behalf

of P. When P is suspended on the source host, u_ofile[d] is closed in order to keep the source

host in a consistent state. Using the dynamic approach, when the process is resumed on the

destination host, u_ofile[d] is not opened again until the migrated process attempts to read the

file. The migration handler then instantiates the file object by the open() operation and by the

lseek[) operation to move the offset of u_ofile[d] so that the requested read() starts from the

right place. The overhead of the dynamic approach for the resumption of a migrated process is

smaller than that of the static approach, particularly when the migrated process interacts with

very few environment objects in Ex(P,s). Take the file object as an example, if the migrated

process does not read u_ofile[d] fR after the migration, there is no need for the migration

handler to open the file when the process is resumed. Whereas, in the static approach, the

19

migration handler has to re-open the file at resumption time.

V. Conclusion

To support process migration in UNIX environments, the main problem is how to

encapsulate the location dependent features of the system in such a way that a host independent

virtual environment is maintained by the migration handlers on the behalf of each migrated

process. An object-oriented approach is used to describe the interaction between a process and its

environment. More specifically, we introduce environment objects in UNIX systems to carry out

user file open request

I open(path,flags,mode)

i-----0

while (i < NOFmE _ _,,iew[i]-> mark=----O)

i++;
if (i==NOFmE)

/* code similar to fill return */

/* block for error message */

else {

U_.file[i]- > open(path,flags,mode);
/* code similar to fill return block operation */

};/* else */

File::open(..... I)

/* allocate object space */
/* code similar to operations */

/* on file structure */

/* mark open operation */

user request still using

the old format

inside U_block, user
class use its definition

of file object, and

then performs similar

open file work inside

file object

inside a file object

Figure 7 The Mapping of System Calls and Object Operations

20

the user-environment interaction. Our implementation of the migration handlers is based on

both the state consistency criterion and the property consistency criterion.

The current UNIX releases such as 4.2Bsd and System V [18] do not support process

migration. To make process migration available as an additional feature of the system without

affecting current users and existing code (not the system level code), we need to hide the

environment objects from user processes such that the system calls are still invoked in the old

way. For this reason, a mapping between the standard system calls and the external operations

of environment objects must be done at the system level. Figure 7 is an example of a open() file

operation to show how this mapping can be done. The top block in Figure 7 is the standard

open() system call. The middle block is the code that searches for an open slot in the U-block for

a file object. Then the actual open operation is executed in the file object U_file [i].

References

[1] Powell, M. L. and Miller, B. P., "Process Migration in DEMOS/MP", Operating System

Review, Vol. 17, No. 5, 1983.

[2] Theimer, M. M., Lantz, K. A., and Cheriton, D. R., "Preemptable Remote Execution
Facilities for the V-System", ACM Operating Systems Review, Vol. 19, No. 5, 1985

[3] Rashid, R. F. and Robertson, G. G., "Accent: A Communication Oriented Network

Operating System Kernel", Proc. of the Eighth Symposium on Operating Systems Principles,

December, 1981.

[4] Ni, L. M., Xu, C.-W. and Gendreau, T. B., "Draft Algorithm - A Dynamic Process
Migration Protocol", Proceedings of the Fifth International Conference on Distributed

Computing Systems, May 13-17, 1985.

[5] Stone, H. S., "Multiprocessor Scheduling with the Aid of Network Flow Algorithms", IEEE
Transactions on Software Engineering, SE-3, No. 1, January, 1977.

[6] Rennels, D. A., "Distributed Fault-Tolerant Computer Systems", IEEE Computer, Vol.
13, No. 3, March, 1980.

[7] Solomon, M. H. and Finkel, R. A., "The Roscoe Distributed Operating System",
Proceedings of the Seventh Symposium on Operating Systems Principles, 10-12 December

1979.

21

[8] Cagle, R. P., "Process Suspension and Resumption in UNIX System V Operating System",

Thesis Report UIUCDCS-R-86-1240, Department of Computer Science, University of

Illinois at Urbana-Champaign, January 1986

[9] Chen, A. Y.-C., "An UNIX 4.2BSD Implementation of Process Suspension and

Resumption", Thesis Report UIUCDCS-R-86-1286, Department of Computer Science,

University of Illinois at Urbana-Champaign, June 1986

[10] Lu, Chin and J. W. S. Liu, "The Notion of Correctness in Process Migration", Report
UIUCDCS-R-86-1307, Department of Computer Science, University of Illinois at Urbana-

Champaign, Dec. 1986

[11] Cheheyl, M. H., Gasser, M., et. at., "Verifying Security", ACM Computing Surveys, Vol. 13,

No. 3, September 1981

[12] Popek, G.J. and Farber, D.A., "A Model for Verification of Data Security in Operating

Systems", Communication ACM, Vol. 21, No. 9, September 1978

[13] Parnas, D. L., "A Technique for Software Module Specification with Examples",
Communication ACM, Vol. 15, No. 5, May 1972

[14] Halpern, J. Y. and Moses, Y., "Knowledge and Common Knowledge in a Distributed
Environment", ACM SIGACT-SIGOPS, Symposium on Principles of Distributed

Computing, Vancouver, Canada, August 1984

[15] Stroustrup, B., "The C++ Programming Language", Addison-Wesley Publishing Company,
1986

[16]

[171

Bourne, S.R., "The UNIX System", Addison-Wesley Publishing Company, 1983

"UNIX Programmer's Manual Reference Guide

Distribution",Computer Science Divison, Department of

Computer Science, University of California, March 1984

4.2 Berkeley Software

Electrical Engineering and

[18] "UNIX System V User Guide", ATg_T Technologies, Inc. 1984

22

